Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output
نویسندگان
چکیده
منابع مشابه
Least Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملTwo-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output
In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed. In this regard, ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients. . To evaluate the proposed regression model, we introduce the fu...
متن کاملLinear regression analysis for fuzzy/crisp input and fuzzy/crisp output data
In order to estimate fuzzy regression models, possibilistic and least-squares procedures can be considered. By taking into account a least-squares approach, regression models with crisp or fuzzy inputs and crisp or fuzzy output are suggested. In particular, for these fuzzy regression models, unconstrained and constrained (with inequality restrictions) least-squares estimation procedures are dev...
متن کاملFuzzy least-squares linear regression analysis for fuzzy input-output data
A fuzzy regression model is used in evaluating the functional relationship between the dependent and independent variables in a fuzzy environment. Most fuzzy regression models are considered to be fuzzy outputs and parameters but non-fuzzy (crisp) inputs. In general, there are two approaches in the analysis of fuzzy regression models: linear-programmingbased methods and fuzzy least-squares meth...
متن کاملLeast Squares One-class Support Vector Machine on Fuzzy Set
In this paper, we formulate a least squares version of the one-class support vector fuzzy machine (LS one-class SVFM) which is combined with the fuzzy set theory. The parameters in the proposed algorithm, such as weight vector and bias term, are fuzzy numbers. Our model only needs to solve a system of linear equations, instead of a complex quadratic programming problem (QPP) solved in one-class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2010
ISSN: 2287-7843
DOI: 10.5351/ckss.2010.17.2.141